
On Two Mechanisms Related to the “3n+1” Problem
Brenton Bostick

Wittenberg University
Post Office Box 720

Springfield, Ohio 45501-0720
s04.bbostick@wittenberg.edu

ABSTRACT
Let T(n) = (3n+1)/2 if n odd, and n/2 if n even. The “3n+1”
problem asks if for all integers n ≥ 1, there exists an i such
that Ti(n) = 1. In this paper, I present two mechanisms
related to the problem. The first is a cellular automaton that
computes iterations of the “3n+1” function. The second is a
function that computes successive local maxima and
minima of the sequence generated by iterating T.

1. INTRODUCTION
Let T(n) = (3n+1)/2 if n odd, and n/2 if n even. The

“3n+1” problem, known also as the Collatz problem, asks
if for all integers n ≥ 1, there exists an i such that Ti(n) = 1.
An excellent survey of progress on the problem has been
written by Lagarias [3]. Wolfram has many interesting
results on computational aspects of the problem [5].

2. A CELLULAR AUTOMATON FOR
COMPUTING THE FUNCTION T

A cellular automaton is an array of cells on a grid that
evolves through discrete time steps. Each cell has a state
that is updated according to previously defined rules that
depend on the states of the cell’s neighbors and the state of
the cell itself. Cellular automata are simply defined yet
demonstrate behavior that is sometimes chaotic and
unpredictable.

The function T(n) can be restated as (n+1)(n mod 2) +
⎣n/2⎦. This particular arrangement makes T(n) amenable
for implementation on a computer. With the bits of n
expressed as …d3d2d1d0, n mod 2 is simply d0 and ⎣n/2⎦ is
…d4d3d2d1. Arranged as a traditional addition problem
(with π acting as the binary point):

Figure 1

In the process of the addition, we keep track of the running
sum, carry bit and the d0 bit. The trick is that multiple
iterations can be computed in parallel.

Starting at the right, we keep track of the intermediate sum
d1 + 2d0. To symbolize this in the cellular automaton, we
say that cell j in the neighborhood (i, j, π), where j is a 0 or
1, goes to s(i+2j , j), as shown in Figure 2. The notation
s(a,b) represents a state that encodes the intermediate sum a
and the d0 bit value of b. All other states remain the same.

Figure 2

After the second time step, the previous intermediate sum
is reduced modulo 2 and the next intermediate sum is
computed.

Figure 3

The function m(n) is m mod 2, the function q(n) is the
quotient of a divided by 2 if n = s(a,b), and the function
z(n) returns b if n = s(a,b). The process continues for the
specified number of time steps. We can assign the 6
possible intermediate sums and d0 combinations the
following integers:

s(0,0) → 2

s(1,0) → 3

s(0,1) → 4

s(1,1) → 5

s(2,1) → 6

s(3,1) → 7

It is easy to define m, q, and z in terms of numerical
functions:

q(n) = ⎣(n-2)/4⎦
m(n) = n mod 2
z(n) = ⎣n/4⎦
s(a,b) = 2 + a + 2b.

For consistency in using integers for states, we will use 8
instead of π for the binary point. The update rules for a cell
j in a neighborhood (i,j,k) are:

if (j = 0 or 1) then
{
 if (k = 8) then

update j to 2 + m(i) + 4 j
else if (k = 2,3,4,5,6, or 7) then

update j to 2 + m(j) + q(k) + (2 + j) z(k)
}
else if (j = 2,3,4,5,6, or 7) then
 update j to m(j)
else leave j alone

Below is an example run of the cellular automaton
with input 27 = 110112 after 10 time steps:

Figure 4

The cellular automaton evolves downward and each cell
reflects the update of the cell directly above it. On a larger
time scale, labeling each cell with a number would be
infeasible, so each cell is colored uniquely to demonstrate
the same effect. Below are 30 time steps of the cellular
automaton with an input of 27 = 110112:

Figure 5

Additional rules can be included to remove the 2-colored
trails that propagate to the left. These cells have states of 2
and 4, which indicate that both have a sum value of 0 and a
d0 bit value of 0 and 1, respectively.

Figure 6

The maximum number of cells required with the new rule
now depends on the length of the largest integer in the
sequence of iterates of T.

Figure 7

Figure 8

The cellular automaton needs 2 time steps to compute each
bit, but multiple bits are computed in parallel. After an
initial n time steps for an input n bits long, the border of
active cells grows as the actual sequence of iterations of t.
If only the sequence of even/odd decisions is needed, then
for n time steps, only the first ⎣n/2⎦ bits of the input are
required.

Figure 8 shows the evolution of the cellular automaton
from input 27. The function T reaches 1 in 70 steps, so the
cellular automaton reaches the (218) state in 140.

The cellular automaton that has been defined is simply a
codification of the process of computing T by addition.

The “3n+1” problem can now be restated by asking if the
cellular automaton does indeed always reach the (218) state
for all valid inputs.

3. A “FASTER” FUNCTION
A function U is introduced that computes the local maxima
and minima of the sequence generated by iterating T.

A run is a group of consecutive equal bits. A single bit can
be a run. Define a function r(n) such that r(n) returns the
length of the run of trailing bits in the binary representation
of n. Example: r(101102) = 1 and r(10112) = 2. Define a
function a(n) that returns the integer whose binary
representation is the bits that occur after the run of trailing
bits in n. Example: a(10112) = 102 = 2 and a(101102) =
10112 = 11. For integers of the form n = 2k-1, a(n) is
defined to be 0.

For even n, T(n) is n/2 and r(n) is the number of trailing 0’s
in the binary representation of n.

For odd n, T(n) is equal to
 (n + 2n + 1)/2 and r(n) is the number of trailing 1’s in the
binary representation of n. Necessarily, the last bit of a(n)
for any odd n is 0.

Define a function U on the integers such that U(n) =
Tr(n)(n). Then U(n) = a(n) if n is even and 3r(n)(a(n)+1)-1 if
n is odd.

If n is even, then U(n) simply shifts out all of the factors of
2 and is a(n). The odd branch of U(n) is derived from the
fact that if an odd n has r(n) many trailing 1’s, then T(n)
has r(n)-1 trailing 1’s. The number of odd iterations of an
odd n is r(n), as can be shown by induction. The actual
expression in the function is based on (3/2)k(n+1)-1, which
is the expression for iterating T(n) k many times, for odd n.
The factor of 1/2k may be removed because the propagation
of carry bits implies (n+1)/2k = a(n) + 1, for odd n.

The function U computes successive maxima and minima
of T because a run of evenness implies a minimum and a
run of oddness implies a maximum.

Lemma The mean number of steps of T skipped by U is 2.

Proof: The function r defined above represents the number
of “trials” before “failure” of the run of bits of n. Because
the probability of success is the same for each trial (1/2)
and each trial is independent of each other, r is a geometric
random variable with p = 1/2. The function r has a
geometric distribution over the integers. A geometric
random variable has a mean of 1/p. Therefore, the mean
value of r(n) is 2.

For any n, the number of steps of T skipped by U is r(n).
Since the mean value of r is 2, the mean number of steps
skipped by T is 2.

If an integer converges to 1 under iteration of T, then it will
on average take half as many steps to do so under U. If an
integer does not converge to 1, then nothing more can be
said.

4. SUMMARY
The mechanisms shown in this article are new tools in the
analysis of the “3n+1” problem. The cellular automaton
demonstrates what effect that locality has on the bits on
computing the function T. The function U demonstrates the
symmetry between evenness and oddness in the problem,
and the amount of latent information in the integers
themselves.

5. ACKNOWLEDGEMENTS
My thanks go to the participants of the NKS Summer
School 2003 for providing the environment in which these
ideas were first cultivated, Matthew Szudzik for his support
on this project, and Dr. Doug Andrews for helping me
clarify portions of my arguments.

6. References
[1] Conway, J.H. Unpredictable Iterations. Proc. 1972 Number

Th. Conf., University of Colorado, Boulder, Colorado, 49-
52. 1972.

[2] Knuth, D.E. The Art of Computer Programming, Vol. 2:
Seminumerical Algorithms, 3rd ed. Reading, MA: Addison-
Wesley, 1998.

[3] Lagarias, J.C. The 3x+1 Problem and Its Generalizations.
Amer. Math. Monthly. 92, 3-23. 1985.

[4] Terras, R. A Stopping Time Problem on the Positive
Integers. Acta. Arith. 30, 241-252, 1976.

[5] Wolfram S. A New Kind Of Science. Champaign, IL:
Wolfram Media, 2002

	INTRODUCTION
	A CELLULAR AUTOMATON FOR COMPUTING THE FUNCTION T
	A “FASTER” FUNCTION
	SUMMARY
	ACKNOWLEDGEMENTS
	References

