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ABSTRACT 
Let T(n) = (3n+1)/2 if n odd, and n/2 if n even. The “3n+1” 
problem asks if for all integers n ≥ 1, there exists an i such 
that Ti(n) = 1. In this paper, I present two mechanisms 
related to the problem. The first is a cellular automaton that 
computes iterations of the “3n+1” function. The second is a 
function that computes successive local maxima and 
minima of the sequence generated by iterating T. 

1. INTRODUCTION 
Let T(n) = (3n+1)/2 if n odd, and n/2 if n even. The 

“3n+1” problem, known also as the Collatz problem, asks 
if for all integers n ≥ 1, there exists an i such that Ti(n) = 1. 
An excellent survey of progress on the problem has been 
written by Lagarias [3]. Wolfram has many interesting 
results on computational aspects of the problem [5]. 

 

2. A CELLULAR AUTOMATON FOR 
COMPUTING THE FUNCTION T 

A cellular automaton is an array of cells on a grid that 
evolves through discrete time steps. Each cell has a state 
that is updated according to previously defined rules that 
depend on the states of the cell’s neighbors and the state of 
the cell itself. Cellular automata are simply defined yet 
demonstrate behavior that is sometimes chaotic and 
unpredictable. 

The function T(n) can be restated as (n+1)(n mod 2) + 
⎣n/2⎦. This particular arrangement makes T(n) amenable 
for implementation on a computer. With the bits of n 
expressed as …d3d2d1d0, n mod 2 is simply d0 and ⎣n/2⎦ is 
…d4d3d2d1. Arranged as a traditional addition problem 
(with π acting as the binary point): 

 

 
Figure 1 

In the process of the addition, we keep track of the running 
sum, carry bit and the d0 bit. The trick is that multiple 
iterations can be computed in parallel. 

Starting at the right, we keep track of the intermediate sum 
d1 + 2d0. To symbolize this in the cellular automaton, we 
say that cell j in the neighborhood (i, j, π), where j is a  0 or 
1, goes to s(i+2j , j), as shown in Figure 2. The notation 
s(a,b) represents a state that encodes the intermediate sum a 
and the d0 bit value of b. All other states remain the same.  

 
Figure 2 

After the second time step, the previous intermediate sum 
is reduced modulo 2 and the next intermediate sum is 
computed.  

 
Figure 3 

The function m(n) is m mod 2, the function q(n) is the 
quotient of a divided by 2 if n = s(a,b), and the function 
z(n) returns b if n = s(a,b). The process continues for the 
specified number of time steps. We can assign the 6 
possible intermediate sums and d0 combinations the 
following integers: 

s(0,0) → 2 

s(1,0) → 3 

s(0,1) → 4 

s(1,1) → 5 

s(2,1) → 6 

s(3,1) → 7 



It is easy to define m, q, and z in terms of numerical 
functions: 

q(n) = ⎣(n-2)/4⎦ 
m(n) = n mod 2 
z(n) = ⎣n/4⎦ 
s(a,b) = 2 + a + 2b. 
 

For consistency in using integers for states, we will use 8 
instead of π for the binary point. The update rules for a cell 
j in a neighborhood (i,j,k) are: 
 
if (j = 0 or 1) then 
{ 
 if (k = 8) then 

update j to 2 + m(i) + 4 j 
else if (k = 2,3,4,5,6, or 7) then 

update j to 2 + m(j) + q(k) + (2 + j ) z(k) 
} 
else if (j = 2,3,4,5,6, or 7) then 
 update j to m(j) 
else leave j alone 
 

Below is an example run of the cellular automaton 
with input 27 = 110112 after 10 time steps: 

 

 
Figure 4 

The cellular automaton evolves downward and each cell 
reflects the update of the cell directly above it. On a larger 
time scale, labeling each cell with a number would be 
infeasible, so each cell is colored uniquely to demonstrate 
the same effect. Below are 30 time steps of the cellular 
automaton with an input of 27 = 110112: 

 
Figure 5 

Additional rules can be included to remove the 2-colored 
trails that propagate to the left. These cells have states of 2 
and 4, which indicate that both have a sum value of 0 and a 
d0 bit value of 0 and 1, respectively. 

 
Figure 6 

The maximum number of cells required with the new rule 
now depends on the length of the largest integer in the 
sequence of iterates of T. 

 
Figure 7 



 

 
Figure 8 

The cellular automaton needs 2 time steps to compute each 
bit, but multiple bits are computed in parallel. After an 
initial n time steps for an input n bits long, the border of 
active cells grows as the actual sequence of iterations of t. 
If only the sequence of even/odd decisions is needed, then 
for n time steps, only the first ⎣n/2⎦ bits of the input are 
required. 

Figure 8 shows the evolution of the cellular automaton 
from input 27. The function T reaches 1 in 70 steps, so the 
cellular automaton reaches the (218) state in 140. 

The cellular automaton that has been defined is simply a 
codification of the process of computing T by addition. 

The “3n+1” problem can now be restated by asking if the 
cellular automaton does indeed always reach the (218) state 
for all valid inputs. 

3. A “FASTER” FUNCTION 
A function U is introduced that computes the local maxima 
and minima of the sequence generated by iterating T. 

A run is a group of consecutive equal bits. A single bit can 
be a run. Define a function r(n) such that r(n) returns the 
length of the run of trailing bits in the binary representation 
of n. Example: r(101102) = 1 and r(10112) = 2. Define a 
function a(n) that returns the integer whose binary 
representation is the bits that occur after the run of trailing 
bits in n. Example: a(10112) = 102 = 2 and a(101102) = 
10112 = 11. For integers of the form n = 2k-1, a(n) is 
defined to be 0. 

For even n, T(n) is n/2 and r(n) is the number of trailing 0’s 
in the binary representation of n. 

For odd n, T(n) is equal to 
 (n + 2n + 1)/2 and r(n) is the number of trailing 1’s in the 
binary representation of n. Necessarily, the last bit of a(n) 
for any odd n is 0.  

Define a function U on the integers such that U(n) = 
Tr(n)(n). Then U(n) = a(n) if n is even and 3r(n)(a(n)+1)-1 if 
n is odd. 

If n is even, then U(n) simply shifts out all of the factors of 
2 and is a(n). The odd branch of U(n) is derived from the 
fact that if an odd n has r(n) many trailing 1’s, then T(n) 
has r(n)-1 trailing 1’s. The number of odd iterations of an 
odd n is r(n), as can be shown by induction. The actual 
expression in the function is based on (3/2)k(n+1)-1, which 
is the expression for iterating T(n) k many times, for odd n. 
The factor of 1/2k may be removed because the propagation 
of carry bits implies (n+1)/2k = a(n) + 1, for odd n. 

The function U computes successive maxima and minima 
of T because a run of evenness implies a minimum and a 
run of oddness implies a maximum. 

Lemma The mean number of steps of T skipped by U is 2. 

Proof: The function r defined above represents the number 
of “trials” before “failure” of the run of bits of n. Because 
the probability of success is the same for each trial (1/2) 
and each trial is independent of each other, r is a geometric 
random variable with p = 1/2. The function r has a 
geometric distribution over the integers. A geometric 
random variable has a mean of 1/p. Therefore, the mean 
value of r(n) is 2. 

For any n, the number of steps of T skipped by U is r(n). 
Since the mean value of r is 2, the mean number of steps 
skipped by T is 2. 

If an integer converges to 1 under iteration of T, then it will 
on average take half as many steps to do so under U. If an 
integer does not converge to 1, then nothing more can be 
said. 

4. SUMMARY 
The mechanisms shown in this article are new tools in the 
analysis of the “3n+1” problem. The cellular automaton 
demonstrates what effect that locality has on the bits on 
computing the function T. The function U demonstrates the 
symmetry between evenness and oddness in the problem, 
and the amount of latent information in the integers 
themselves. 
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