Simple Termination is Complicated

Brenton Bostick

Abstract

In this survey we discuss the concept of simple termination of
term rewriting systems. Simple termination captures the idea of us-
ing syntax to prove termination of term rewriting systems. We cover
many ideas concerning simple termination and related topics, includ-
ing Kruskal’s Tree Theorem, and well-quasi-orderings. Also convered
are alternative definitions of terminology, and the position of simple
termination as an active area of research.

1 Introduction

Proving termination of computer programs is an important and active
area of research. It is by knowing that programs eventually terminate that
you know search engines will return results, that rendering graphics in video
games will be fast, and in general that it is safe to use computers without
waiting indefinitely.

Proving termination is necessary for showing total correctness of mathe-
matical functions and algorithms, and is part of the study of liveness prop-
erties of programs.

In this survey, we discuss simple termination of term rewriting systems.
Term rewriting is a general system for representing programs as expressions
or “terms”, and defining transformations between states as rules transforming
one term to another.

Termination proofs usually proceed by giving meaning and interpreting
successive states of programs in some well-order, thus ensuring any descend-
ing sequence is finite. But interpretation of states is not necessary; proof of
termination can follow from the syntax of the states themselves.

Simple termination of term rewriting systems employs just such a concept.
Proofs of simple termination follow from the syntax of the terms themselves,
thus making it easier to reason about than other forms of termination. This
is possible by an application of Kruskal’s Tree Theorem, a generalization of
Ramsey’s Theorem.

We assume basic knowledge of computer science and mathematics. We
address many potentially confusing ideas concerning simple termination, mo-
tivate the employment of the imposing Kruskal’s Tree Theorem, explain alter-
native definitions of terminology, clarify contradictory definitions, illustrate
these ideas with several examples, and attempt to communicate that simple
termination is indeed not simple, but rather complicated, but offers a very
rich and interesting theory.

In section 2, we discuss general approaches to proving termination of
programs. In sections 3, and 4, we cover term rewriting systems, how terms
can be compared with each other, and termination ideas specific to term
rewriting. With the following sections, 5, 6, 7, and 8, the bulk of the theory
is developed, discussing the landmark Tree Theorem of Kruskal, its useful-
ness to term rewriting, the definition of simple termination, technical details
about its application, and examples of usage. Finally, in sections 9 and 10,
termination techniques that are strictly weaker and stronger than simple
termination are covered.

2 Proving Termination of Programs

In this section, we cover some preliminaries concerning the theory of
termination proofs, examples of programs illustrating the concept of termi-
nation, the difficulty of termination proofs, concepts of computation where
termination is not assumed, a brief overview of some proof methods, and the
history of the subject.

2.1 Preliminaries

Proving termination of programs is a very important endeavour in com-
puter science. It is necessary for showing total correctness of mathematical
functions and algorithms, and is part of the study of liveness properties of
programs.

We will assume a basic knowledge of computer programs and forgo any
axiomatic treatment of the subject.

2.2 Examples

We start by illustrating the difficulty of proving termination of programs
with a few examples. In these examples, all values are assumed to be non-
negative integers, and the input() function represents input from the user.

These examples are from [5].

Example 2.2.1:
x = input();
y = input();
while z > 0 && y > 0 do
if input() =1 then

r:=x—1;
y=y+1
else
y=y—1
end if
end while

In Example 2.2.1, we see two variables initialized to arbitrary non-negative
integers. Control loops while both are greater than 0. Inside the loop, a ran-
domly chosen integer is tested to see if it is 1. If so, x decrements and y
increments; otherwise, y decrements.

Example 2.2.2:
x = input();
y = input();
while z > 0 && y > 0 do
if input() = 1 then

ri=x—1;
y = input();
else
y=y—1
end if
end while

Example 2.2.2 is slightly different, in that y is set to an arbitrary integer
instead of being decremented.

Example 2.2.3:
x = input();
y = input();
while z > 0 && y > 0 do
if input() =1 then

r:=x—1;
yi=y+1;
else
T :=x+1;
y=y—1L
end if
end while

And in the final Example 2.2.3, the variables are either incremented or
decremented depending on the branch.

Do these programs terminate? In this section we will show how to answer
that question with mathematical proofs.

2.3 Difficulty

The problem of program termination, otherwise known as the Uniform
Halting problem, could perhaps be considered the first problem posed in
computer science.

The problem is that in general, programs can have an infinite number of
states and we must reason about infinite sequences of states. So showing ter-
mination requires mathematical reasoning about states of programs, rather
than plain observation.

In general, a program cannot be shown to be terminating or non-terminating.

This is the famous result of Turing [32].

Nevertheless, there has been tremendous research in this area and it is
possible to prove a great number of non-trivial computer programs to be
terminating.

2.3.1 Las Vegas Algorithms

A class of computations where termination is not required is randomized
algorithms. A Las Vegas algorithm is guaranteed to return a correct answer,
but is not guaranteed to be complete. It has a running time that is a random
variable. [15] characterizes the running times of Las Vegas algorithms.

Complete Las Vegas algorithms can be guaranteed to solve each solvable
problem instance in time t,,,., where t,,,, is a instance-dependent constant.
Let P(RT4, <t) denote the probability that A finds a solution for a solvable
instance 7 in time < ¢, then A is complete exactly if for each 7 there exists
some tpqq such that P(RT4 . < tmas) = 1

Approzimately complete Las Vegas algorithms solve each solvable prob-
lem instance with a probability converging to 1 as the run-time approaches
oo. Thus, A is approximately complete, if for each soluble instance ,
limy oo P(RTa, <t) =1

Essentially incomplete Las Vegas algorithms are Las Vegas algorithms
which are not approximately complete (and therefore also not complete).

In terms of this paper, we are interested in determining when an approx-
imately complete Las Vegas algorithm is actually complete.

2.4 Proving Termination of Programs

Proving termination of programs involves showing that all possible se-
quences of valid state transitions are finite.

Termination proofs for programs are sometimes ad hoc, and are some-
times systematic, but virtually all proofs follow these few steps built from
the first principles developed by Turing in [33]:

1. Find a termination argument, i.e., a map into a well-founded order.

2. Show that every program state transition leads to a strict decrease in
the map.

Because it is often difficult to find a single well-founded order to map
program transitions, the termination argument is many times modular. Mod-
ularity means that a property is taken from many sets, or that a property
holds over many sets.

Well-founded orders have a nice property that allows modularity:

Proposition 2.4.1: A termination argument can be a union of finitely many
well-founded orders. If a transitive relation R is covered by finitely many
well-founded relation Uy, ..., U,, then R is well-founded. This is lemma 1 in
[3].

Proof. Assume that there is an infinitely descending R-chain. Because there
is only a finite number of relations Uy, ..., U,, then some U; must occur
in the chain infinitely often. However, U; is well-founded, there can be no
infinitely descending U;-chain. Thus, our initial assumption is incorrect and
a termination argument can be a union of finitely many well-founded orders.

O

An example of using modularity for termination is the size-change princi-
ple, introduced in [23]. The size-change principle applies when each variable
of a program has a well-founded value (e.g. an integer) and every infinite
chain of state transitions would cause an infinite descent of some variable.
The size-change principle is modular because every infinite chain of state
transitions has to consider some variable and Proposition 2.4.1 guarantees
that the entire termination argument is well-founded.

Proposition 2.4.1 is a specific example of an area of infinite combinatorics
called Ramsey Theory. Ramsey Theory is the study of what internal order
is necessarily imposed on objects as their size increases. A familiar example
of Ramsey Theory is the Party Problem:

In a group of n people, how many people are guaranteed to all know each
other or all not know each other?

In a group of 6 people, it is guaranteed that some 3 people will all know
each or not know each other. This guarantee of 3 people remains until the
group grows in size to 18 people, where it is now guaranteed that 4 people
either know or don’t know each other. There are bounds on the guaran-
teed number for each party size, but for each party size n > 4, the exact
guaranteed number is not known.

Ramsey Theory relates to termination proofs because it can show that
some sequences of objects are necessarily finite; eventually the objects in the
sequence will have a property that contradicts some pre-defined condition
on the sequence. Ramsey Theory’s relation to simple termination will be
explored in section 5. The interested reader is directed to [12] for a good
reference on Ramsey Theory.

2.5 Answers to Examples
Proposition: Example 2.2.1 is terminating.

Proof. The termination argument is the natural order of the integers on the
function 2x + y. Each iteration of the loop causes the value of the function
to decrease. Because the order is on the non-negative integers and is well-
founded, there can be no infinitely descending chain of state transitions. So
the program is terminating.]

Proposition: Example 2.2.2 is terminating.

Proof. The termination argument is the lexicographic order on the tuple
(x,y). Each iteration of the loop causes the value of the tuple to decrease. Be-
cause the order is on the tuples of non-negative integers and is well-founded,
there can be no infinitely descending chain of state transitions. So the pro-
gram is terminating. O

Proposition: Example 2.2.3 is not terminating.

Proof. There is a sequence of inputs that could result in an infinite loop. For
example, after intializing x and y to arbitrary values, the infinite sequence of
inputs 1,0, 1,0, ... causes the value of x and y to simply fluctuate and never
reach 0. O

2.6 History

In [32], Turing showed that the Uniform Halting Problem was undecid-
able. Turing proposed in [33] the first principles approach for termination
proofs used in this survey. Floyd [11] pioneered the idea of interpreting pro-
grams into ordinals to show termination. [5] and [3] provide a good overview
of program termination proofs.

3 Orders

In this section we develop general mathematical theory used in later sec-
tions. It can safely be skipped by the advanced reader.

3.1 Preliminaries

We begin with some preliminary definitions for orders.

Definition: A partial order is a binary relation that is reflexive, antisym-
metric, and transitive.

Definition: A total order is a partial order R where s Rt or t R s for any
two terms s and .

Definition: A strict order is a binary relation that is irreflexive and transi-
tive (and hence asymmetric).

Definition: A well-founded order is an order with no infinitely descending
chains.

Definition: A well-order is a well-founded total order.

3.2 Extensions of Orders

We now take existing orders and show how they can be extended over dif-
ferent structures while preserving important properties like well-foundedness.

3.2.1 Lexicographic Extension

Definition: Given an order > on a set A, the lexicographic order >, on
A x A 1s defined as:

(a1,a2) >z (b1,b2) == a1 > by Vay = by Aag >iep bo

The ordering can be extended to arbitrarily sized tuples. The lexico-
graphic ordering preserves well-foundedness.

3.2.2 Multiset Extension

Definition: Given a well-founded order > on a set A, the multiset order
> 00 M(A), the multisets of A, is defined as:

AO >l Al = Ao 7é Al /\\V/(ll S Al —Ao. Elao S AO —Al. ag > S1

In words, the multiset order on multisets looks at every element in Ay,
and checks if there is some element in Ag that is larger. The multiset ordering
preserves well-foundedness.

3.2.3 Term Extension (Recursive Path Ordering)

Definition: Given a well-founded order > (called a precedence) on an al-
phabet F of function symbols, the term order >,,, on terms 7 (F), is defined
as:

s = f(S1,--,Sm) >rpo §(t1, ..., tn) =1

if either (of the three) cases hold:

1. si=tors; >pt, forsomeicl,....,n
2. >0 ty, foralliel,...,m, and
(a) f>gor

(b) f = g and (s1,...,5,) >I,§£) (t1,...,ty) where 7(f) is a status
function of f: an ordering on the tuples of f’s subterms.

In words, the rpo on terms recursively compares terms syntactically based
on the status and precedence of the functions symbols. The recursive path
ordering preserves well-foundedness.

3.3 Orders on sets of terms

There are orders specific to sets of terms, relating different aspects of
term rewriting.

Definition: A stable ordering is an ordering > such that s > ¢ implies
o(s) > o(t) for any substitution o.

Definition: A monotone ordering is an ordering > such that s > ¢ implies
C[s] > C1t] for any context C.

Monotonicity makes sense when function symbols have meaning, like if
plus or times, but it also makes sense abstractly, when the function symbols
don’t have any inherent meaning.

Definition: A rewrite ordering is a stable, monotonic, strict ordering.

Definition: A reduction ordering is a well-founded rewrite ordering.

4 Proving Termination of Term Rewriting Sys-
tems

Termination is an important property in term rewriting. In conjunction
with the general importance of termination for programs, results that de-
pend on well-founded induction such as Newman’s Lemma also depend on
termination.

4.1 Preliminaries

Definition: A TRS R is terminating if there is no infinite sequence of re-
ductions t; — ty — t3...

4.2 Converting Programs to TRSs

The examples from section 2.2 can easily be converted into roughly-
equivalent TRSs.

Example 4.2.1: TRS for 2.2.1 The TRS has signature F = {s, z}, where s
is unary and z is a constant.

Example 4.2.2: TRS for 2.2.2 The TRS has signature F = {s, 2}, where s
is unary and z is a constant.

(s(z),s(y)) — (x,w) where w is any arbitrary term

(s(2),5(y)) = (s(2),9)

Example 4.2.3: TRS for 2.2.3 The TRS has signature F = {s, z}, where s
is unary and z is a constant.

(s(2), s(y)) = (s(s(x)), s(y))
);5(s(y)))

10

4.3 Characterizing Termination

There are several ways to characterize termination. We will state several
formulations of termination, with the goal of arriving upon an approach that
is potentially decidable.

Proposition 4.3.1: A TRS is terminating iff all instances of its LHS termi-
nate. This is Lemma 1 from [9].

This is obviously not decidable, since there are an infinite number of
instances of any given non-ground term. Corollary: Termination is decidable
for ground TRSs [16].

Proposition 4.3.2: A TRS is terminating iff there exists a well-founded
ordering > such that s —* ¢ implies s > ¢, for all terms s and t. This is
Theorem 5 from [9], and originally stated in [24].

This is not a desirable condition either; there are an infinite number of
rewrites to consider.

Proposition 4.3.3: A TRS R is terminating iff there exists a compatible
reduction ordering >.

If an ordering is closed under contexts and substitutions, then the order
> only has to be checked for the given rewrite rules, instead of every possible
reduction.

This is much better. There are a finite number of cases, so it is potentially
possible to check. Note: the challenge is still the challenge of determining an
order >.

4.4 Different classes of termination

There are many classes of termination. By termination class, we mean a
set of TRSs that can be shown terminating all by the same method.

Example 4.4.1: term-depth ordering: s >geupn ¢ iff term s has a strictly
greater depth than t. “term-depth” termination: if the RHS of every rule
is strictly smaller (term-depth ordering) than the LHS, then the TRS is
term-depth terminating. This is very intuitive, simple induction. The TRS
f(f(z)) = f(z) is term-depth terminating because each reduction removes
one level from terms, so eventually there will be no more f terms.

Example 4.4.2: The TRS f(z) — f(f(x)) is not terminating, since it is
possible to derive the infinite chain f(x) — f(f(z)) — f(f(f(x))) — ...

11

Example 4.4.3: The TRS f(z) — ¢(g(z)) is not term-depth terminating,
but it is terminating. Each reduction removes f terms like the previous
example, but the entire term grows in size. So you could say that the system
is “f-term terminating”.

Example 4.4.4: TRS f(f(z)) — f(g(f(z))) is terminating because the
number of consecutive f terms decreases.

So we see that term-depth termination does not completely capture the
notion of termination. Indeed, there can not be a single effective proof
method for all terminating TRSs. Remember: as long as there is some
way of ordering terms so that each rewrite rule causes a decrease, then the
system is terminating.

4.5 Undecidability

Termination of term rewriting is undecidable [16]. The proof proceeds by
reducing termination of term rewriting to the Uniform Halting Problem for
Turing machines. Termination of 1 rule TRS is undecidable [6]. Termination
of length-preserving, unary TRS is undecidable [4].

But there are decidable subcases. Termination is decidable for ground

TRSs [16].

4.6 Modularity

Termination is not modular. The famous result from Toyama [25] is an
example.

Example 4.6.1: The TRSs given by:

Ro={f(0,1,2) = f(x,z,z)}
Ry ={g(z,y) = z,9(z,y) = y}

are both terminating. But the combined TRS is not, as seen by the infinite
reduction

f(9(0,1),9(0,1),9(0,1)) — f(0,1,9(0,1)) — f(g(0,1),9(0,1),9(0,1)) — ...

12

5 Kruskal’s Tree Theorem

Kruskal’s Tree Theorem is the Fundamental Theorem of Simple Termi-
nation. Simply stated, it shows that if your function symbols have an order
with a property slightly stronger than well-foundedness, then the set of trees
of those function symbols has a well-founded order. Thus, certain TRSs can
be shown terminating by checking a simple property of the rules. Before we
can jump into the theorem, we must cover some preliminaries.

5.1 Homeomorphic Embedding

Definition: The homeomorphic embedding relation <.,,, is defined as fol-
lows: s <., t between terms s and ¢ iff one of the conditions is true:

1. s =x =t for a variable z € V
2. s= f(s1,...,8p) and t = f(t1,...,t,) and $1 Zepp t1,- - -, Sn Lemp tn
3. t= f(tl,...,tn) and Sﬂemb tj

Homeomorphic embedding captures the sense of syntactic simplicity; em-
bedded terms are arrived at by removing subterms.

Example 5.1.1:
f(f(a,x),2) Demp f(f(R(a), h(2)), f(h(z),a))

5.2 Well-Partial-Orders

As discussed in section 2, proof termination usually follows from showing
that some ordered set of program states is well-founded.

But working with well-founded sets is cumbersome. If we could choose
to work with a subset of a well-founded order, such that nice properties are
preserved, then termination would be easier to show for certain classes. That
is what well-partial-orders are for.

Definition: A partial order > on a set A is a well-partial-order (wpo) iff
for every infinite sequence aq, as, as, ... of elements of A there exist indices
¢ < j such that a; < a;.

Well-partial-orders are not equivalent to well-founded partial orders. This
is very important.

With a wpo, you have the guarantee that some two elements will be
comparable. A regular po provides no such guarantee. A wpo can be viewed

13

as a po with a restriction, the a; < a; property. We will see that this property
is very powerful.
There are several equivalent ways of defining well-partial-orders.

Definition: A partial order > on a set A is a well-partial-order iff every
subset of A has at least one, but no more than a finite number, of minimal
elements. c.f., a well-founded set, which has at least one minimal element,
and may have an infinite numbers of minimal elements.

Definition: A partial order > on a set A is a well-partial-order iff every
strictly decreasing sequence is finite and every set of pairwise incomparable
elements is finite. c.f., a well-founded set, which have an infinite number of
pairwise in comparable elements.

Well-partial-orders satisfy a number of useful properties.
Proposition 5.2.1: If a set X is wpo, then any subset of X is wpo.
Proposition 5.2.2: wpo is preserved under finite unions.
Proposition 5.2.3: A set X being well-ordered implies X is wpo.

Proposition 5.2.4: Every infinite sequence has an ascending infinite sub-
sequence (wrt a wpo >).

Proposition 5.2.5: The extension of a wpo > over cartesian product is
WpO.

5.3 Kiruskal’s Tree Theorem

The proof of Kruskal’s Tree Theorem in this article is due to Nash-
Williams [29], which is simpler than the original in [19].

Definition: An infinite sequence ai, as, as, ... is good iff there exist ¢ < j
such that a; < a;. Otherwise, the sequence is bad.

First, we will prove some useful lemmas.
Lemma 5.3.1: Given a bad sequence, a minimal bad sequence exists

Proof. Assume that a bad sequence of terms well-partial-ordered by < exists.
We construct a minimal bad sequence by induction.

Assume that a bad sequence exists starting with terms ¢y, to, t3, ..., %, Let
tn+1 be a minimal term (according to term-size) among the set of all terms
that occur at position n+1 of a bad sequence that starts with t1,%o,t3,...,t,.
By the TH, there exists at least one sequence.

This defines a minimal bad sequence t1, t5, 13, ... O

14

Lemma 5.3.2: < is a wpo on the proper subterms of the elements of a
minimal bad sequence

Proof. We define S to be the set of proper subterms of a minimal bad se-
quence. For each t; in a minimal bad sequence, define S; to be {} if ¢; is

a variable, otherwise t; = fi(si,... ,sfn), for some function symbol f; with
arity n; and we define S; = {s{,..., s}, }. Therefore S = U;S;.
Assume sq, So, S3, ... is a bad sequence in S. Let k be such that s; € S.

Because < is reflexive, the sequence can only be bad if all s; are distinct.
Thus, since U = S; U ... U S,_; is finite, there exists an [> 1 such that
s; € §S—U for all © > [. Because s; is a proper subterm of t, and by
minimality of t1,ts,%3,..., the sequence tq,...,tx_ 1,51, S, Si41,-.. is good.
Since the sequences ty,tq,t3,... and sy, So,s3,... are bad, this can only be
the case if there exist indices i € {1,...,k—1} and j € {1,1,l+1,...} such
that ¢; <s;. If j = 1, then s; = s; is a subterm of ¢, and thus ¢t; <1, a
contradiction. Otherwise, let m be such that s; € S,,. Since j > [, we know
that s; ¢ U, which yields i < k£ < m. However, s; € S,, means that s; is a
subterm of ¢,,,, and thus ¢; <t,,, a contradiction. In both cases, we have seen
that assuming the sequence si, s9, s3,... is bad lead to a contradiction, so
therefore there can be no bad sequence sq, s, s3, ..., and the set of proper
subterms of the elements of a minimal bad sequence is a wpo. O]

Theorem 5.3.3: Kruskal’s Tree Theorem (Finite Form)
Let F be a finite signature and V be a finite set of variables. Then the
homeomorphic embedding < on T (F,V) is a wpo.

Proof. We use the minimal bad sequence method introduced by Nash-Williams.

Consider the minimal bad sequence tq,ts,t3,.... Since F UV is finite,
there is some sequence of indices i1 < 79 < 23 < --- such that ¢;,t;,, s, ...
all have the same root symbol. If this root symbol is a variable or constant,
we have t;, = t,,, implying ¢;, <t;,. Otherwise, the common root symbol
must be a function symbol f, with some arity n.

Because of Lemma 5.3.2 and Lemma 5.2.5, the sequence (s',...,s%),
(s,...,82), (s ... s%),... of proper subterms of t;,t;, ti,,... is good
with respect to the order < extended over cartesian products.

Because the sequence (s%',...,s%), (s2,...,52), (s%,...,5%),... is good,
there are indices ¢ < r such that s <Is¥" A...As;¥ <s?. This implies ti, s,

So irrespective of the common root symbol of ¢;,,¢;,, ¢, .. ., the sequence
must be good and the minimal bad sequence tq,1s,t3,... must be good, a
contradiction.

Our assumption that there is a bad sequence in 7 (F, V) leads to a contra-

diction, so all infinite sequences in T (F,V) are good and thus < is wpo. [

15

6 Simple Termination

Simple termination is a class of termination proofs that uses Kruskal’s
Tree Theorem to show that rewrite systems having a very simple property
are terminating.

6.1 Preliminaries

Definition: An ordering > on terms has the subterm property if t > t|,, for
all subterms ¢|, of ¢.

Assuming that > is a rewrite order, then you just need to show f(...,z,...) >
x for the subterm property.

Definition: A simplification ordering is a rewrite ordering that has the sub-
term property.

Notice that we don’t necessarily have a reduction ordering.

Definition: A TRS R is simplifying if admits a compatible simplification
order.

Might be confusing, since it might seem obvious that a simplifying TRS
is terminating. Simplifying does not assume well-foundedness.

Definition: A TRS R is simply terminating if admits a compatible well-
founded simplification order.

6.2 Embedding

Definition: Let F be a signature. Define the TRS Emb(F) as the set of all
rules

f(,xz,)—>xz

Proposition 6.2.1: For a finite TRS R = (F, R), the following statements
are equivalent:

1. R is simply terminating.
2. RUEmMb(F) is simply terminating.
3. RUEmMD(F) is terminating.

But we still haven’t shown that simple termination implies termination.

16

6.3 Termination
Proposition 6.3.1: <., implies <gimp
Simplification orderings contain the homeomorphic embedding relation.

Theorem 6.3.2: Let F be a finite signature. Every simplification order >
on T(F,V) is well-founded.

Proof. > is a simplification order. Assume an infinite chain of terms ¢; > t5 >
ts... Assume that x € Var(t;11)—Var(t;) and the substitution o = {z — t;}.
Clearly, t; = o(t;). Because > is a rewrite order, then also o(t;) > o(ti41)-
But > is simplification order, which means it has the subterm property. t;
being a subterm of o(t;;1) means that o(t;41) > t;. We have t; = o(t;) >
o(tiv1) > t;, a contradiction. So there is not an x € Var(t;41) — Var(t;).
for all terms in the chain. The set of variables in the chain must be the
finite set X := Var(t1). Since both the signature F and the variables V are
finite, Kruskal implies that this sequence is good. For some ¢ and j, t; < ;.
Lemma 6.3.1 implies ¢; < t;. But this is a contradiction, since we know
t; > t;. Thus, there are no infinite chains of terms ¢; > ¢, > ¢5..., and > is
well-founded.]

6.4 History

The notion of “simplification ordering” and its well-foundedness were
proved in [7]. The terminology “simple termination” was introduced in [21].
In the same paper, Kurihara and Ohuchi proved that simple termination was
modular. Simple termination of one-rule systems is undecidable [27].

17

7 Well-Quasi-Orders

Until now, we have only talked about partial orders and well-partial-
orders. References to quasi-orders and well-quasi-orders are common in the
literature. These are related but distinct concepts.

Definition: A quasi order 3 is a binary relation that is reflexive and tran-
sitive.

Definition: A partial order > on a set A is a well-quasi-order (wqo) iff for
every infinite sequence aq, as, as, ... of elements of A there exist indices ¢ < j
such that a; 3 a;.

~Y

The machinery for reasoning about quasi-orders is largely the same as
that for strict orders. “Note that, except for technical details, well-quasi-
ordered is the same as well-partial-ordered. [20]” “At the casual level it is
easier to work with po than qo, but in advanced work the reverse is true.
[20]” Using wqo or wpo for proving Kruskal’s Tree Theorem yield equivalent
results. The original statement of the Theorem [19] was in terms of wqo.

7.1 Differences

Well-partial-orders and well-quasi-orders do not have the same expressive
power. Despite their similarities in other fields, in term rewriting, there are
cases where qo is strictly more powerful than po.

Example 7.1.1: The TRS
f(f(z)) = g(x)
9(g(x)) = f(z)

cannot be proved terminating with a lexicographic path order based on par-
tial orders, but it can with an lpo based on a quasi-orders.

Proof. There is no strict precedence for f and g that admits a compatible Ipo
on the TRS, since the function symbols are symmetric in the TRS. However, a
quasi-order where f and g are equal is sufficient for showing termination. [J

Example 7.1.2: If f has multiset status, then f(a,b) and f(b, a) are equiv-
alent, and if f > ¢ > d then it is possible to show

f(f(a,b),¢) >rpo [(f (D, a),d)

Without a mpo based on quasi-orders, this is not possible.

18

7.2 History

Well-quasi-orders have a rich history. Kruskal seems to be the first to use
the term “well-quasi-ordering”, but the concept dates back to at least 1952
[13]. [20] is a survey of the field up to 1970, with several comments about its
origins. [3] contains a historical perspective at the end.

19

8 Examples of Simplification Orderings

Simple termination is a useful concept, but it does not provide any con-
crete methods for showing termination. In this section we explore various
popular simplification orderings, and their strengths and weaknesses.

8.1 Lexicographic Path Ordering

Lexicographic path ordering is an instance of RPO from Section 3.2.3,
with the lexicographic extension as the status for function symbols. It was
introduced in [17].

Example 8.1.1: Ackermann’s function The TRS

ack(0,y) — succ(y)
ack(suce(x),0) — ack(x, succ(0))
ack(suce(x), succ(y)) — ack(x, ack(succ(z),y))

can be shown to terminate by using the precedence ack > succ.

8.2 Multiset Path Ordering

Multiset path ordering is an instance of RPO from Section 3.2.3, with
the multiset extension as the status for function symbols. [8] introduced the
multiset path ordering, but called it recursive path ordering.

8.3 Polynomial Simplification Orders

By interpreting function symbols of a TRS as polynomials over the re-
als, it is possible to prove well-foundedness if the polynomials satisfy certain
requirements. First, the polynomials must be monotonic. Second, the poly-
nomials must have the subterm property. By Tarski’s decision procedure,
the first-order theory of the reals is decidable, and so determining whether a
given set of polynomials is a valid interpretation of a given TRS is decidable.

20

9 Below Simple Termination

There are simpler methods of proving termination than simple termina-
tion. In fact, there is a hierarchy of termination proofs for term rewriting
systems.

9.1 The Hierarchy

Simple termination contains all common notions of termination.
The Termination Hierarchy is:

polynomial termination =
w-termination =

total termination =
simple termination =

termination

Each level of the hierarchy represents a class of proof methods or some
mathematical completion of a concept.

Polynomial termination is the set of TRSs that terminate via the poly-
nomial interpretation from [22]. The idea is that terms can be interpreted
as monotonic polynomials on N, so that monotonicity and well-foundedness
are preserved after composition.

w-termination is the set of TRSs that terminate via some interpretation
into monotonic functions in N. Exponential interpretation is in this set, as
well as any functions on the integers that satisfy the requirements.

Total termination is the set of TRSs that terminate via some monotonic
total order.

Each level of the hierarchy is strict: there are examples of each class
termination that the previous class cannot prove. For an overview of the
hierarchy, see the [36] and section 6.3.3 of [26].

Theorem 9.1.1: Total termination implies simple termination
Let > be a reduction order total on ground terms. Then > satisfies the
subterm property.

Proof. Assume we have t # t|, for all p # €. By totality, we must have ¢, > .
This leads to the infinite descent t|, > t = t[t|,], > t[t], > tlt[t]], > .- .-
This is a contradiction, so > must have the subterm property. O

For all reduction orderings, we always have !(¢|, > t), a subterm is never
greater than a term. But can sometimes the two can be incomparable (both

21

I(t|, > t) and !(t > t|,)). You could also sometimes have t > t|,, but it is
not required. For a simplification ordering, you always have t > t|,,.

9.2 Simple Termination does not imply Total Termi-
nation

While it is somewhat easy to see that total termination implies simple
termination, the converse is not true. There are simply terminating systems
that are not totally terminating.

Theorem 9.2.1: The TRS R consisting of the signature F = {f, g,a,b}
and the rules

is not totally terminating.

Proof. R cannot be totally terminating because there is no total order such
that both f(a) > f(b) and ¢g(b) > g(a). By monotonicity, any total order
would imply a > b and b > a, a contradiction. O

Theorem 9.2.2: The TRS R consisting of the signature F = {f, g,a,b}
and the rules

fla) — f(b)
g(b) = g(a)
is simply terminating.

Proof. By theorem 6.2.1, R is simply terminating if R U Emb(F) is termi-
nating. There is an easily defined simplification order on T (F, V) satisfying
this requirement, namely the order defined by:

for variables z € V.]

22

9.3 Popular Simplification Orderings

Several popular simplification orderings are actually totally terminating.
LPO is totally terminating [36] [34], and MPO is w-terminating [36] [14].

Even though it is useful to base the definitions of LPO and MPO on
simplification orders, it is not necessary. It is interesting to note that actual
examples of simplification orderings are not strictly simply terminating. The
proofs of total termination came later, after the definitions.

9.4 History

The Termination Hierarchy was defined in [35]. Polynomial termination
was first mentioned in [22]. w-termination was never formally defined, as it
intuitively follows from polynomial termination. It was first mentioned in
[35]. Total termination was defined in [10].

23

10 Beyond Simple Termination

Simple termination is useful as a descriptive class of terminating systems,
but it does not contain all terminating systems. There are systems that are
terminating, but not simply terminating.

In this section we explore various systems that are terminating but not
simply terminating, and some proof methods that can prove systems termi-
nate that escapes simple termination.

10.1 Non-self-embedding systems

Non-self-embedding systems are a strict superset of simply terminating
systems, but they are not very useful in practice.

Definition: A reduction chain t; — to — t3 — ... is self-embedding if
t; <t; for some i < j. A TRS is self-embedding if it allows self-embedding
reductions.

Theorem 10.1.1: For a finite TRS, non-termination implies self-embeddingness.
Proof. Follows from 5.3.3, Kruskal’s Tree Theorem. O]
Corollary 10.1.2: Non-self-embeddingness implies termination.

We will see that there is a strict separation between simple termination
and non-self-embedding.

Theorem 10.1.3: Simple termination implies non-self-embedding.

Proof. Follows from 6.2.1, the equivalences between termination and simple
termination. O

Theorem 10.1.4: The TRS f(g(g9(z))) — h(g9(g(f(f(h(g(x))))))) is not

simply terminating.

Proof. By 6.2.1, it suffices to show that RUEmMb(F) is not terminating. This
is seen with the reduction:

fg(g(x))) = hg(g(f(f(Mlg(@))))))) = Ems [(f(g(2))) =
F(h(g(g(f (F(R(2))))))) = Bms [(9(9(2)))

Theorem 10.1.5: The TRS fgg — hggf fhg is non-self-embedding

24

Proof. Proposition 8 of [36] O

Proposition 10.1.6: Showing non-self-embedding is not sufficient for show-
ing termination of all TRS.

Proof. The TRS
f(f(@) = flg(f(2)))

is terminating, but not non-self-embedding. It is terminating because the
number of consecutive f terms strictly decreases each step. It is not non-

self-embedding because f(f(z)) < f(g(f(x))). O

Theorem 10.1.7: Determining whether a given TRS is self-embedding is
undecidable.

Proof. Given in [31]. O

There are systems with infinite signatures that are non-self-embedding,
but not terminating. Such as the TRS a; — a;1;. Non-self-embedding is
only useful for finite signatures, and is not a general class of termination.

10.2 Dependency Pairs

The Dependency Pair method can be used to show termination for sys-
tems that are not simply terminating.

Definition: A defined symbol f € F of a TRS R is the root symbol of a
left-hand side rule of R.

Definition: If f(s1,...,s,) = Clg(t1,...,tm)] is a rule in R and ¢ is a
defined symbol of R, then

<F(81, ceey Sn), G(tl, ce ,tm)>
is called a dependency pair.
Definition: An infinite sequence ((s;,t;))i=123... of dependency pairs of a

TRS R is called an infinite R-chain if substitutions o; exist such that ¢ —*

Oit1 s
s;4q forevery:=1,2,3,...

Proposition 10.2.1 relates R-chains to termination.

Proposition 10.2.1: A TRS is terminating iff it does not admit an infinite
R-chain.

Example 10.2.2: f(f(z)) — f(g(f(x))) is terminating.

25

Proof. f is the only defined symbol. f occurs twice on the RHS, so there are
two dependency pairs:

pr=(F(f(x)), F(g(f(2)))) and py = (F(f(x)), F(z))

We proceed with proof by contradiction. Assume that ({s;,?;))i=123, . is an
infinite R-chain. There are no substitutions o, 7 such that F(g(f(z)))?

r*F(f(x))7, so the R-chain must be made up exclusively of ps. Necessarily,
F(z)7 —* F(f(z))?*. z% must have one more occurence of f than z%+!

for all © = 1,2,3,.... However, this is a contradiction since f-occurences
in a term is well-founded. So there is no infinite R-chain, and the TRS is
terminating. O

Dependency pairs were introduced in [1] and section 6.5.5 of [26] has a
good survey on the method.

26

References

1]

2]

3]

[4]

Thomas Arts and Jirgen Giesl. Automatically proving termination
where simplification orderings fail. In TAPSOFT ’97: Proceedings of
the 7th International Joint Conference CAAP/FASE on Theory and
Practice of Software Development, pages 261-272, London, UK, 1997.
Springer-Verlag.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cam-
bridge University Press, New York, NY, USA, 1998.

Andreas Blass and Yuri Gurevich. Program termination and well partial
orderings. ACM Trans. Comput. Logic, 9(3):1-26, 2008.

A.-C. Caron. Linear bounded automata and rewrite systems: influence
of initial configurations on decision properties. In TAPSOFT ’91: Pro-
ceedings of the international joint conference on theory and practice of
software development on Colloquium on trees in algebra and program-
ming (CAAP ’91): wol 1, pages 74-89, New York, NY, USA, 1991.
Springer-Verlag New York, Inc.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving pro-
gram termination. Commun. ACM, 2009. to appear.

Max Dauchet. Simulation of turing machines by a regular rewrite rule.
Theor. Comput. Sci., 103(2):409-420, 1992.

Nachum Dershowitz. A note on simplification orderings. Inf. Process.
Lett., 9(5):212-215, 1979.

Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279-301, 1982.

Nachum Dershowitz. Termination of rewriting. J. Symb. Comput., 3(1-
2):69-116, 1987.

M.C.F. Ferreira and H. Zantema. Total termination of term rewrit-
ing. Technical Report RUU-CS-92-42, Department of Information and
Computing Sciences, Utrecht University, 1992.

R. W. Floyd. Assigning meanings to programs. Mathematical aspects of
computer science, 19(19-32):1, 1967.

Ronald L. Graham and Bruce L. Rothschild. Ramsey theory (2nd ed.).
Wiley-Interscience, New York, NY, USA, 1990.

27

[13]

[14]

[15]

G. Higman. Ordering by divisibility in abstract algebras. Bull. London
Math. Soc., 3:326-336, 1952.

Dieter Hofbauer. Termination proofs by multiset path orderings imply
primitive recursive derivation lengths. Theor. Comput. Sci., 105(1):129-
140, 1992.

Holger H. Hoos and Thomas Stutzle. Evaluating las vegas algorithms —
pitfalls and remedies. In In Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI-98, pages 238-245. Morgan
Kaufmann Publishers, 1998.

G. Huet and D. S. Lankford Lankford. On the uniform halting problem
for term rewriting systems. Technical report, Rapport Laboria 283,

INRIA, 1978.

Sam Kamin and Jean-Jacques Levy. Attempts for generalizing the re-
cursive path orderings. unpublished, 1980.

D. E. Knuth and P. B. Bendix. Simple word problems in universal alge-
bras. In J. Leech, editor, Computational Problems in Abstract Algebra,
pages 263-267. Pergamon, New York, 1970.

J. B. Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi’s con-
jecture. Transactions of the American Mathematical Society, 95(2):210—
225, 1960.

J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered
concept. J. Combin. Theory Ser. A, 13:297-305, 1972.

Kurihara and Ohuchi. Modularity of simple termination of term rewrit-
ing systems. Information Processing Society of Japan, 5:1-2, 1990.

Dallas Lankford. On proving term rewriting systems are noetherian.
Technical Report Memo MTP-3, Mathematics Department, Louisiana
Tech. University, 1992. 1979.

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-amram. The size-change
principle for program termination, 2001.

Zohar Manna and Stephen Ness. On the termination of markov al-
gorithms. In Proc. 3rd Hawaii Int. Conf. on Systems Science., pages

782-792, 1970.

28

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

Yoshihito Toyama. Counterexamples to termination for the direct sum
of term rewriting systems. Inf. Process. Lett., 25(3):141-143, 1987.

Roel de Vrijer Marc Bezem, Jan Willem Klop, editor. Term Rewriting
Seminar — Terese. Cambridge University Press, 2003.

Aart Middeldorp and Bernhard Gramlich. Simple termination is diffi-
cult. In Applicable Algebra in Engineering, Communication and Com-
puting, pages 228-242. Springer, 1993.

Aart Middeldorp and Hans Zantema. Simple termination of rewrite
systems. Theoretical Computer Science, 175:127-158, 1997.

C. S. J. A. Nash-Williams. On well-quasi-ordering finite trees. In Pro-
ceedings of the Cambridge Philosophical Society, volume 59 of Proceed-
ings of the Cambridge Philosophical Society, pages 833—, 1963.

Enno Ohlebusch. A note on simple termination of infinite term rewriting
systems. Technical report, 1992.

David A. Plaisted. The undecidability of self-embedding for term rewrit-
ing systems. Inf. Process. Lett., 20(2):61-64, 1985.

A. M. Turing. On computable numbers, with an application to the
entscheidungsproblem. Proc. London Math. Soc., 2(42):230-265, 1936.

Alan M. Turing. Checking a large routine. In Anonymous, editor, Re-
port on a Conference on High Speed Automatic Computation, June 1949,
pages 67-69, Cambridge, UK, 1949. University Mathematical Labora-
tory, Cambridge University. Inaugural conference of the EDSAC com-
puter at the Mathematical Laboratory, Cambridge, UK.

Andreas Weiermann. Termination proofs for term rewriting systems by
lexicographic path orderings imply multiply recursive derivation lengths.
Theor. Comput. Sci., 139(1-2):355-362, 1995.

Hans Zantema. Termination of term rewriting: Interpretation and type
elimination. Journal of Symbolic Computation, 17:23-50, 1994.

Hans Zantema. The termination hierarchy for term rewriting. Appl.
Algebra Engrg. Comm. Comput, 1999.

29

